Core excitations processes of C1(s) in C_2 and C_2H_2 molecules by electron impact.

L. S. S. Soares[†], S. E. Michelin[†], H. L. Oliveira[†], A. M. S. Santos[†], J. J. Piacentini[†], M. M. Fujimoto^{*} and M.-T. Lee^{*}

Abstract

Distorted-wave approximation (DWA) is applied to study excitation of core-level electron in C_2 molecules by electron impact. More specifically, we report calculated differential (DCS) and integral (ICS) cross sections for the $X^1\Sigma_g^+ \to {}^{1,3} \Pi_u(1s\sigma_u \to 1p\pi_g)$ and $X^1\Sigma_g^+ \to {}^{1,3} \Pi_g(1s\sigma_g \to 1p\pi_g)$ transitions in the C_2 molecule and comparison is made with $X^1\Sigma_g^+ \to {}^{1,3} \Pi_g(1s\sigma_u \to 1p\pi_u)$ and $X^1\Sigma_g^+ \to {}^{1,3} \Pi_u(1s\sigma_g \to 1p\pi_u)$ transitions in the C_2H_2 molecule in the 300 - 800 eV incident energy range. The ratios, named RI(3:1), calculated by dividing the distorted-wave integral cross sections(ICS), for transitions leading to the triplet and the singlet core-excited states as a function of incident energy are also reported. The present study shows the RI(3:1) behavior for the C 1s \to π^* transition in each species here studied. The generalized oscillator strength(GOS) profiles for discrete C 1s excited states of C_2 and C_2H_2 have also been calculated, and are compared with the available data reported in the literature. Quantitative agreement between the present theory and experiments is also satisfactory.

[†] Departamento de Física, UFSC, 88040-900 Florianópolis, SC, Brazil

^{*} Departamento de Química, UFSCar, 13565-905, São Carlos, SP, Brazil

^{*} Departamento de Física, UFPR, 81531-990 Paraná, PR, Brazil