Inner-shell excitation of N 1(s) in N₂O molecules by electron impact.

H. L. Oliveira[†], L. S. S. Soares[†], S. E. Michelin[†], K. T. Mazon[†], A. S. Falck[†],

M. A. Scopel[†], J.J. Piacentini[†], M. M. Fujimoto^{*} and M.-T. Lee^{*}

 † Departamento de Física, UFSC, 88040-900 Florianó
polis, SC, Brazil

* Departamento de Química, UFSCar, 13565-905, São Carlos, SP, Brazil

* Departamento de Física, UFPR, 81531-990 Paraná, PR, Brazil

Abstract

Distorted-wave approximation (DWA) is applied to study excitation of core-level electron in N₂O molecules by electron impact. More specifically, we report calculated differential (DCS) and integral (ICS) cross sections for the $X^{1}\Sigma^{+} \rightarrow^{1,3} \Pi(2s\sigma \rightarrow 3p\pi)$ and $X^{1}\Sigma^{+} \rightarrow^{1,3} \Pi(2s\sigma \rightarrow 3p\pi)$ transitions in the N₂O molecule and comparison is made with $X^{1}\Sigma_{g}^{+} \rightarrow^{1,3} \Pi_{g}(1s\sigma_{u} \rightarrow 1p\pi_{g})$ and $X^{1}\Sigma_{g}^{+} \rightarrow^{1,3} \Pi_{u}(1s\sigma_{g} \rightarrow 1p\pi_{u})$ transitions in the N₂ molecule in the 400 - 900 eV incident energy range. The ratios, named RI(3:1), calculated by dividing the distorted-wave integral cross sections(ICS), for transitions leading to the triplet and the singlet core-excited states as a function of incident energy are also reported. The present study shows the RI(3:1) behavior for the N 1s $\rightarrow \pi^{*}$ transition in each species here studied. The generalized oscillator strength(GOS) profiles for discrete N 1s excited states of N₂O and N₂ have also been calculated, and are compared with the available data reported in the literature. Quantitative agreement between the present theory and experiments is also satisfactory.